
Adaptive Self-assembly in Swarm robotics through
Environmental Bias

Jean-Marc Montanier
CRAB Lab,

Department of Computer and Information Science,
NTNU, Trondheim, Norway

jean-marc.montanier@idi.ntnu.no

Pauline C. Haddow
CRAB Lab,

Department of Computer and Information Science,
NTNU, Trondheim, Norway

pauline@idi.ntnu.no

Abstract—A swarm of robots may face challenges in unknown
environments where self-assembly is a necessity e.g. crossing
difficult areas. When exploring such environments, the self-
assembly process has to be triggered only where needed and
only for those robots required, leaving other robots to continue
exploration. Further, self-assembled robots should dis-assemble
when assembled structures are no longer required. Strategies have
thus to be learned to trigger self-assembly and dis-assembly so as
to meet the needs of the environment. Research has focused on the
learning of strategies where all robots of the swarm had to adopt
one common strategy: either self-assembly or dis-assembly. The
work herein studies how strategies using both self-assembly and
dis-assembly can be learned within the same swarm. Further, the
effect of the different environments on this challenge is presented.

I. INTRODUCTION

A swarm of robots can face environmental challenges such
as crossing a difficult obstacle or moving a heavy object.
In order to address such challenges, it has been proposed
to endow the robots with the capacity to self-assemble in
larger structures [1]. Triggering such self-assembly through
environmental cues is termed functional self-assembly [2].
Despite the benefits of self-assembly, whilst some or all robots
are assembled, less robots are available to explore the area, an
issue for time-critical exploration scenarios in the real world.
Thus so as to maximise efficient exploration, self-assembly
should only occur where and when needed and only with
the number of robots required so as to meet the needs of
the environment, leaving a maximum number of individual
robots available for exploration. Further, self-assembly and dis-
assembly may be required in different areas of the environment
at the same time and such processes should be conserved until
no longer required.

When a swarm of robots is deployed in the rubble of col-
lapsed buildings, self-assembled robotic structures are needed
to bridge over obstacles and should be dis-assembled when
the obstacle is crossed. In such a time critical scenario it is
clear that those robots that are not needed for the structure
required, should be free to explore. Similarly, where a swarm
of robots that are deployed to assist a person, they can meet
a heavy object to be moved, requiring sufficient robots to
self-assemble into a strong enough structure. Again those not
required should be conserved as dis-assembled and thus free to
explore for further tasks. In both these applications, the exact
environment is not specified a priori and may be composed
of many sub-environments each with their own needs with

regards to the self-assembly and dis-assembly processes. As
a consequence, the robots of the swarm will have to learn
autonomously different strategies adapted to the environment
at hand. In the work herein the learning of strategies capable
of self-assembly and dis-assembly in unknown environments
is studied in depth.

In section II works related to the learning of self-assembly
are presented. The evolutionary algorithm used is described in
section III. The experimental set-up is presented in section IV,
followed by the results obtained. Finally the conclusions are
presented in section VI.

II. RELATED WORK

The Evolutionary Robotic (ER) domain studies the auto-
mated design of robot strategies by relying on the principles of
artificial evolution [3]. Once the design process is completed,
the best strategies can be used on real robots to perform the
task at hand. Research addressing functional self-assembly
has focused on the design of explicit fitness functions [4],
[5]. These fitness functions measure the robot’s ability to
learn a strategy for solving a specific well defined task in
a known environment. If the task or environment changes, a
new strategy would need to be evolved, requiring a new fitness
function.

To face such a challenge, fitness functions can, instead,
be expressed in terms of rewards. In [2], [6], different sub-
environments of the environment give rewards of different
amounts, the highest reward given where self-assembly is
required. To observe evolution of self-assembly strategies,
the fitness function thus maximises the rewards achieved,
driving all the robots to the sub-environment where self-
assembly is rewarded. Such an approach does not provide
for dis-assembled robots in the swarm and further requires
the designer to know where self-assembly is needed in the
environment. Autonomous adaptation to the environment is the
focus of Embodied Evolutionary Robotics [7] where fitness
functions use information locally available to the robots and
the evolutionary algorithm runs while the robots are deployed
in the environment. In [8], a reward-based evolution of self-
assembled structures, the results highlighted the necessity to
give higher rewards to self-assembled robots.

In [9] a fitness function rewards the robots travelling the
furthest away in an environment where some of the sub-
environments can only be crossed by self-assembled robots



and the others by dis-assembled robots. This approach results
in the presence of all the robots in the last sub-environment
where they will all use the same strategy, thus hindering the
exploration abilities of the swarm.

In the work herein, investigation of the dispersion of the
swarm and the achievement of self-assembly and dis-assembly
is conducted so as to determine whether the conditions for
self-assembly and dis-assembly can in fact depend on local
environmental constraints and thus determine whether self-
assembly rewards and/or fitness controlled movements are
necessary.

III. EVOLUTIONARY ALGORITHM

The mEDEA algorithm [10] addresses the evolution of
robot strategies without the need for an explicit fitness func-
tion. The evolutionary process evolves and adapts the strategies
of the robots to the constraints of the environment, in situ.

Within mEDEA each robot contains an active genome and
a reservoir of received genomes. An active genome encodes the
parameters of the current controller i.e. each robot’s strategy
depends on the robot’s current active genome. At first the
active genome is generated randomly, and the reservoir is
empty. At any time step, each robot broadcasts in a limited
range a mutated copy (gaussian mutation) of its active genome
and stores genomes received from neighbours. Only one copy
of each received genome is stored in the reservoir. At the
end of a generation i.e. a pre-defined number of time steps,
each robot “forgets” its active genome and randomly picks
one genome from its reservoir of stored genomes (if not
empty). If the reservoir is empty the robot becomes inactive.
An inactive robot remains stationary and stores broadcasted
genomes during one generation after which it attempts to select
a new active genome. When a new genome is successfully
selected, the reservoir of the robot is emptied. This algorithm
is duplicated within each robot in the population.

The working of this algorithm is illustrated in figure 1. In
(1), a generation starts, and the reservoir of genomes of each
robot is empty. Two robots are controlled by their respective
active genomes (in bold): G1 and G2. The robot in the top
right corner is inactive. In (2) and (3) the robots with an
active genome move in the environment and the inactive
robot remains stationary. In (2) the active robots are close
and therefore store each other’s mutated genomes in their
respective reservoir of received genomes (in grey). In (3) the
robot controlled by G2 is close to the inactive robot, which
stores a mutation of G2 in its reservoir. In (4), the current
generation ends: the genome G2 has spread more and thus has
higher probability of being selected. One robot is using a local
modification of the genome G1, termed G1’, two robots are
using local modifications of G2 termed G2’.

For a genome to survive, it needs to spread to other robots
so as to be present in their reservoir. Additionally, a genome
which has spread more than the others has a higher chance to
be selected. Notice that the selection of the genomes does not
depend on a fitness function but on the interaction between the
robots. These interactions further depend on the environment.

Fig. 1: The mEDEA algorithm: a simplified illustration.

IV. EXPERIMENTAL SETUP

The work herein investigates the conditions necessary for
the evolution of strategies enabling both self-assembly and dis-
assembly within a given environment. The first hypothesis,
inspired by the work of [8] providing higher rewards for self-
assembled robots, investigates how such increased rewards
can promote the evolution of strategies relying on both self-
assembly and dis-assembly and without the introduction of
sub-environments. The second hypothesis proposes that the
introduction of sub-environments alone i.e. without rewards,
can promote both self-assembly and dis-assembly strategies
within an environment. All experiments are performed with
100 robots using the mEDEA algorithm and Roborobo —
a fast open-source multi-robot simulator [11]. The parameter
settings are given in table I and the full implementation of the
experiments is available [12].



Parameter Value
arena width and length 1024 ∗ 530 pixels
population size 100 robots

lifetime (i.e. generation duration) 400 steps
proximity sensor range 64 pixels
broadcast signal 32 pixels
self-assembly distance 20 pixels
robot rotational velocity 0.52 rad/time step
robot translational velocity 2 pixels/time step
genome length 82 real values

# food items 800
energy item diameter 10 pixels
energy item regrow delay 25
energy per energy point 50 energy units
energy per biased energy point 500 energy units
robot energy consumption 1 energy unit per step
robot maximum energy level 800 energy units
robot initial energy level 400 energy units

TABLE I: Parameter Settings

A. Energy Implementation

Robots are endowed with a battery of limited capacity and
are loosing one unit of energy per time step. The battery is
pre-loaded with an initial amount of energy. If a robot runs
out of energy it will become inactive. This comes in addition
to the inactivity triggered when no genomes are present in
the reservoir at the end of a generation (see section III). An
inactive robot stops moving and does not spread its genome.

In order to remain active a robot has to harvest energy
from energy points present in the environment. When an
energy point is harvested it disappears for a fixed delay and
its energy is added to the battery of the robot. If the energy
points contain more energy than necessary to refill the battery,
the excess is lost. In order to assume simple and physically
plausible assumptions, self-assembled robots do not exchange
energy between each other. Therefore, when a robot harvests
an energy point, all the energy goes to its battery.

When inactive, a robot receives the genomes distributed by
neighbouring robots during a given generation. If a genome
has been received, the robot becomes active and its battery is
loaded with an initial amount of energy.

In the work herein, the genomes have to maintain the robots
active in order to be spread in the swarm. In other words, they
have to adopt a strategy which leads the robots to harvest
energy. The presence of energy points in the environment
depends both on the strategies used by each robot (under
evolution) and on the specificities of the energy points (size,
number, energy in each). The specificities of the energy points
are set so as to produce a relatively low constraints on energy
access (see table I).

B. Robots

The simulated robots used in this work are based on
the ChIRP robot [13]. Each robot has a round body of 2
pixels in diameter and can move at a maximum velocity of

2 pixels/timesteps. 2 actuators are connected to the wheels.
By slowing down either actuator the robot will turn in the cor-
responding direction at an angle proportional to the difference
in actuator speeds. There are eight evenly distributed proximity
sensors, as depicted in figure 2. Each proximity sensor has
a range of 64 pixels, thus able to measure the distance to
obstacles within this range. In addition to the sensors provided
by the platform, 4 further sensors are simulated: 2 sensors
return the direction and distance to the closest energy point;
one sensor returns a binary value depending on the position
of the robot (on top of an energy point or not) and one sensor
within the robot reads the amount of energy left in the battery.
Each robot is, further, endowed with a mechanism to self-
assemble with other robots. This assembly mechanism is based
on a such a prototyped extension for the ChIRP and has been
shown to be physically realistic.

Fig. 2: Placement of distance sensors of the robots

Intuitively if two robots are to assemble, both should have
an intent to assemble. However, such a strict requirement
reduces the chance of assembly, requiring a robot wishing to
assemble to not only meet another robot but one with intent
to assemble and within the time that the robot’s assembly
intent is still active. As such, one can expect little or no self-
assembly in the earlier phase of any experiment. Strategies
for dis-assembly will then be optimised and those for self-
assembly will be disregarded. To counteract this effect, the
physical prototype for assembly was designed to enable a
robot, with the intent to self-assemble (assembly mechanism
activated), to assemble with other robots that it by meets by
chance i.e. no requirement for self-assembly intent by the
other robot. If the state of the assembly mechanism of an
assembled robot changes from activated to deactivated the two
robots will dis-assemble. Groups of self-assembled robots can
further self-assemble and dis-assemble with each others and
with dis-assembled robots. For simplicity, it is assumed that
the movement of a group of self-assembled robots corresponds
to the linear sum of the individual movements of its members.

C. Robot’s Controller

The controller of a robot is composed of a local copy of
the mEDEA algorithm and a feed-forward neural network. The
current active genome sets the weights of the feed-forward
neural network. The neural network reads the values returned
by the sensors and sets the activation value of the actuators
and the assembly mechanism. Therefore, by optimizing the
genomes, the evolutionary algorithm modifies the strategies of
the robots. When the robot is inactive, no active genomes are
present and the robot stands still.



Fig. 3: Feedforward network controlling the robot

The feed-forward neural network is illustrated in figure 3. It
is composed of 13 inputs, 3 hidden neurons and 3 outputs. The
inputs are the values of 12 sensors present on the robot and 1
neuron is biased to 1. The 12 sensors are: 8 distance sensors,
1 sensor returning the direction to the closest energy point,
1 sensor returning the distance to the closest energy point, 1
binary sensor indicating the presence of the robot on an energy
point and 1 sensor returning the level of energy in the robot.
The inputs are all scaled between 0 and 1. The two first outputs
are used to control the translation speed (TS) and rotation
speed (RS) of the robot. The translational speed is scaled
between 0 and TSMax. The rotational speed is scaled between
0 and RSMax. The last output (between 0 and 1) controls the
activation of the self-assembly mechanism. If the output is less
than 0.5 the self-assembly mechanism is activated. If the output
is greater or equal to 0.5 the self-assembly is deactivated.

D. Environments

Fig. 4: Screenshot of the experimental setup. The starred
crosses are the robots. The disks are the energy points.

The environments simulated herein consist of an arena
with 100 robots and 800 energy points – see figure 4. The
parameters used to perform the experiments are given in
table I. In each environment 200 runs of 400.000 time steps

are performed. The properties of the energy points depend on
the assumption tested.

1) Baseline Environment: A baseline environment is de-
signed in order to provide a reference point to study the
dynamics of the evolutionary algorithm. It may be defined as
one where the strategies studied are placed in equally difficult
situations i.e. nothing in the environment favours one or the
other. The impact of modifications brought to the design of the
environment can then be studied with regards to this reference.

The design of the baseline environment is inspired by the
one proposed in [8] where all robots receive equal rewards
independent of their position or whether they are part of a
self-assembled structure. For the purposes of the experiments
herein the two environmental factors considered are the inter-
action between robots and the interactions between robots and
energy points. The position of robots and energy points are
initialized following a uniform random distribution. Further,
in order to not introduce bias in the interactions between
robots and energy points, the environment features energy
points available across all the environment for all robots (self-
assembled or dis-assembled).

2) Biased Environments: Biased environments are designed
to promote the evolution of self-assembly within the swarm
where required whilst enabling dis-assembly of robots else-
where. As stated, two biases are studied: increasing the re-
ward to self-assembled robots, and creating sub-environments
favourable to either self-assembled robots or dis-assembled
robots.

These biases are implemented by creating two types of
energy points: the ones that can be harvested only by dis-
assembled robots, and the ones that can be harvested only by
self-assembled robots. The properties and repartitions of these
energy points changes with the bias studied.

Energy bias: In this biased environment, the energy points
reserved for self-assembled robots contains 10 times more
energy than the energy points reserved for dis-assembled
robots. This reward is chosen as it is superior to the one
proposed in [8] under the linear and logarithmic schemes. Both
types of energy points are found in equal proportions, and all
energy points have the same size.

Repartition bias: In order to study this bias two environ-
ments are created where energy points are found in equal
proportions, have the same size and contain the same amount
of energy. It is therefore expected to observe half of the
robots dis-assembled and half of the robots self-assembled.
The energy points are more or less distinctively separated,
as illustrated in figure 5. In the separated environment each
type of energy points are found in their half of the arena.
In the mixed environment the two types of energy points are
uniformly distributed across the arena.

V. RESULTS

A. Baseline Environment

In order to establish a reference on the evolution of self-
assembly and dis-assembly, experiments are first run in the
baseline environment. The proportion of robots self-assembled
(SAp) has been extracted for each run every 40.000 time



Fig. 5: The grey points are reserved for disassembled robots
and the black points are reserved for self-assembled robots.
Top: Separated environment. Bottom: Mixed environment
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Fig. 6: Proportion of self-assembled robots in the baseline
environment.

steps (100 generations of 400 time steps each). Note that
the proportion of robots dis-assembled is directly deduced as
1− SAp.

Figure 6 shows the distribution of the results as boxplots.
In this graph the lower quartile represents the 25th percentile

and the upper quartile represents the 75th percentile. The
extremity whiskers extend to 1.5 of the inter-quartile range
from their respective quartiles. The data beyond the whisker
are considered as outliers and are plotted as points. The center
bold mark shows the median of the distribution.

In the first time steps, the median of the distribution is
equal to 0.29. The median value is continuously decreasing
until stabilizing at a low value (0.04) at time step 200.000. The
quartiles are relatively close to the median in the first boxplot,
and show large variations in the remaining boxplots. This
indicates that the distribution analysed present large variations.
The whiskers of the boxplots are further away from the median,
and outliers are present in multiple boxplots. These elements
confirm the presence of distributions with large variations.

The analysis of the variation of the median shows that in
the baseline environment the dis-assembly strategy is preferred
over the self-assembly strategy by the evolutionary algorithm.
The analysis of the quartiles, whiskers and outliers of the
boxplots shows that a large variation is present in the evolution
of self-assembly i.e. the runs performed have a large range of
outcomes.

This result is coherent with the previous observations made
in [8] where dis-assembly is preferred over self-assembly in
the absence of rewards for self-assembly strategy. It is now
possible to compare the results obtained when an additional
reward is given to self-assembled robots with the results
obtained in the baseline.

B. Energy Bias

Figure 7 depicts the proportion of self-assembled robots in
experiments conducted in the energy biased environment. In
the first time steps the median of the distribution is equal to
0.36. The median value is decreasing to stabilize at a low level
(0.01) from time step 160.000. This low value then remains
stable.

This result is similar to the one obtained in the baseline
environment. Contrary to expectations, given the work of
[2], [9], the energy biased environment in fact promotes the
evolution of dis-assembly behaviours. To investigate why such
a contrary result has appeared, the sub-environments present
in the work in [2], [9] are further investigated.

C. Effect of Sub-environments

To study the effect of sub-environments favourable to
different strategies, experiments are conducted in the mixed
and separated environments. Recall that in these environments
the self-assembled and dis-assembled robots obtain the same
amount of energy, but from different types of energy points.

Figure 8 shows the histogram of the proportion of self-
assembled robots in the last generations in the mixed and sep-
arated environments. Since the data obtained in one generation
are too few to produce a reliable analysis, the data from the
last 16.000 time steps (40 generations) of each run are used. In
black the results for the mixed environment are found, and in
grey the results for the separated environments are presented.

In the mixed environment, most of the runs show a low
proportion of self-assembled robots. The distribution show a
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Fig. 7: Proportion of self-assembled robots in the energy biased
environment.
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Fig. 8: Proportion of robots self-assembled in the 40 last
generations in a mixed environment (black) and a separated
environment (grey).

long tail towards higher proportions of self-assembled robots.
In the separated environment, two local maxima are found:
one for a low proportion of self-assembled robots, and one
for a proportion of self-assembled robots equal to 0.40. These
two distributions are qualitatively and significantly different
(wilcoxon test, p− value < 0.01).

These results show that, in the mixed environment, popula-
tions using strategies relying on dis-assembly are more likely
to evolve than populations using self-assembly. On the other
hand, in the separated environments, it is possible to observe
the evolution of self-assembly by a part of the population while
the other part remain dis-assembled. Therefore, this validates
our expectations on the effect of sub-environments in the
environment: the presence of sub-environments can promote
the evolution of self-assembly and dis-assembly even if no
additional rewards are given.

If the swarms were addressing at best the constraints
of the environment, only one maxima would be found in
the separated environment for a proportion of robots self-
assembled equal to 0.5. Two avenues are explored in order
to understand the presence of a large number of runs relying
principally on dis-assembled robots: what is the evolutionary
dynamic in the separated environment ? How do the strategies
used in mixed and separated environments differ ?

D. Evolution of Self-assembly

Figure 9 shows the proportion of self-assembled robots in
the 200 runs performed in the separated environment. Looking
at the median value, the proportion of self-assembled robots is
equal to 0.23 in the first time steps. This value then increase,
and fluctuates but never goes under 0.25.
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Fig. 9: Proportion of self-assembled robots in a separated
environment.

This result shows that the strategies using self-assembly
are present in the first time steps, as in the baseline envi-
ronment. However, the populations evolved in the separated
environment show an increasing rate of self-assembled robots.
This shows that in the separated environment the evolutionary
dynamic tends to address the environmental constraints.

However the medians of the boxplots never reach values
higher than 0.40, rather than the 0.5 that may be expected.



Thus interactions between the robots and the environment
are still biasing dis-assembly strategies and require further
investigation.

E. Strategies with Self-assembly

The strategies evolved in the separated environment are
compared to the ones evolved in the mixed environment on two
aspects: the use of the assembly mechanism and the movement
of the robots. This aims to show the effect of the separation
of the environment on the strategies evolved.

The use of the assembly mechanism is analysed first. Recall
that this mechanism is activated or deactivated by the controller
of a robot. When robots are within self-assembly distance of
one another, they automatically self-assemble if at least one
robot has activated its assembly mechanism. The connection
between robots holds as long as one of them has the assembly
mechanism activated.

If the robots of a swarm seldom activate their assembly
mechanisms, there will be a low probability to observe self-
assembled structures. On the other hand, if the robots of a
swarm often activate their assembly mechanism, there will
be a high probability to observe self-assembled structures.
Nevertheless, this probability will not be equal to 1 since two
robots have to come within self-assembly distance in order to
self-assemble.

Figure 10 shows the histogram of the activation duration
of the assembly mechanisms (value normalised by the lifetime
of the robots). The durations obtained during the last 40
generations of the runs performed in the mixed and separated
environments are displayed in black and grey, respectively.
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Fig. 10: Portion of time during which robots have their
assembly mechanism activated.

The histogram in a mixed environment has two local
maxima: one for short activation durations and one for long
activation durations. The first maxima is higher than the

second. The histogram in a separated environment shows two
similar local maxima, but the second local maxima is higher
than the first.

These results show that two different usages of the self-
assembly mechanism are evolved: seldom activated and often
activated. The first usage is preferred in the mixed environment
(low number of self-assembled robots) while the second is
preferred in the separated environment (higher number of self-
assembled robots). This shows that the activation duration
of the self-assembly mechanism is effectively used so as
to regulate the number of self-assembled and dis-assembled
robots depending on the environment.

In the separated environment, despite long activations of
the self-assembly mechanisms, more robots are dis-assembled
than self-assembled (see figure 9). A possible interpretation is
that since robots can not locate each other, they have to rely on
chance to come within self-assembly distance of other robots.
Therefore, a robot may have to move a long time before being
able to self-assemble.

The second aspect investigated in the strategies of the
robots is their movements. In the separated environment
(depicted in figure 5 top), if the movements of the robots
exploit the specificity of the environment, a majority of the
self-assembled robots will be found in the right side where
energy points reserved for self-assembled robots are found.

0

15

0.00 0.25 0.50 0.75 1.00

Proportion of self-assembled robots on the right side

N
u

m
b

e
r 

o
f 

ru
n

s

Mixed
Separated

Fig. 11: Proportion of self-assembled robots on the last 40
generation in the separated environment and the mixed envi-
ronment.

The proportion of self-assembled robots on the right side is
shown in figure 11. The data from the last 40 generations are
used. The x-axis shows the proportion of self-assembled robots
on the right side of the environment i.e. the proportion of self-
assembled robots on the side of the environment favourable
to them. The histogram obtained in the mixed environment is
shown in black and the distribution obtained in the separated
environment is show in grey.



In the mixed environment, the histogram is centred on the
value 0.5 with large variations around its center. In comparison,
the histogram in the separated environment has always higher
bars when the proportion of self-assembled robots on the right
side is greater than 0.5. Large gaps are observed between the
bars of the histograms, which indicates that more data would
be required fore more detailed observations.

The results indicate that in the mixed environment, the self-
assembled robots do not prefer one side over the other. In the
separated environment, larger proportions of self-assembled
robots are found on the right side of the environment. This
indicates an exploitation of the specificities of the separated
environment i.e. the bias in the environment has promoted the
evolution of self-assembly and dis-assembly when required by
the environment. However, only some of the self-assembled
robots are on the left side. Therefore, the specificity of the
environment is not fully exploited.

VI. CONCLUSION

The results presented in this paper have shown that it
is possible to evolve strategies using self-assembly and dis-
assembly in the same swarm of robots by relying on a
separated environment composed of two sub-environments:
one favourable to self-assembly and one favourable to dis-
assembly. It has also been shown that a bias in terms of
energy given to the self-assembled robots is not sufficient
to promote the evolution of self-assembled robots. However,
the separation of the environment in sub-environments each
favourable to a different strategy is shown to be sufficient.
In the separated environment, further analysis of the strategies
evolved showed that the self-assembled robots exploit the self-
assembly mechanism but not exploit fully the specificities of
the environment.

A limitation presented in this paper lies in the exploitation
of the separation of the environment: not all self-assembled
robots are found in the side that is most favourable to them.
To address this challenge, more complex controllers may be
needed to exploit the environment. Additionally, other factors
such as the design of the self-assembly mechanism can lead
to different evolutionary dynamics.

As the main goal of the EER domain lies in the optimiza-
tion of strategy for real robots, applications to the real world
of the effect studied in this paper are envisioned. Future work
will investigate such phenomena in situ i.e. on the ChiRP [13]
robot, applying wireless charging modules as energy points.
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