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Abstract

This paper concerns the evolution of altruism in a population
of autonomous agents. It explores the relation between al-
truistic behaviours and spatial dispersion in open-ended evo-
lution whenever energetic constraints must be addressed. A
method derived from Embodied Evolution is used to model
the spatial interactions between agents from an individual
perspective. Firstly, results show that spatial dispersion and
levels of altruism are strongly correlated, which confirms the-
oretical results from biology, but also that this relation may
be overshadowed by the complex interactions at work in the
ecosystem. Secondly, this paper investigates how robust al-
truistic behaviours able to cope with various environmental
pressures may be evolved. In particular, it is shown that there
is a trade-off between efficiency and versatility: the ability
to perform well accross a wide range of environmental con-
ditions often comes at the cost of sub-optimal performance
in terms of survival, especially when compared to more con-
strained (and less versatile) evolved strategies.

Introduction
Cooperative behaviours are defined by the realisation of ac-
tions by an agent which brings benefits to other agents. This
paper focuses on altruism, which is a special type of coop-
erative behaviour characterised by the sacrifice of one agent
for the benefit of others (Lehmann and Keller, 2006). This
is different from mutual cooperation as the fitness of an
agent is permanently impaired by such acts. This type of
behaviour may look counter-intuitive from the viewpoint of
the theory of evolution as an altruistic agent reduces its own
chance of survival in order to increase the chance of sur-
vival of other agents. However, such altruistic behaviour
is found in multiple biological species, and multiple works
have investigated the conditions and mechanisms at play in
its evolution.

A common way to explain the evolution of altruism in bi-
ology is to consider the survival of genes rather than individ-
uals. In this context, individuals are vehicles for genes that
try to survive (Dawkins, 1976). This aspect is captured by
the idea of the inclusive fitness which considers that the fit-
ness of a particular individual depends both from its own ac-
tion and from the actions of its related kin (Maynard Smith,

1964).

Classic approaches in game theory (Maynard Smith,
1974) and adaptive dynamics (Diekmann, 2004) have been
used to explore multiple causes that favour the evolution
of altruism. The most studied mechanisms are kin se-
lection (Maynard Smith, 1964), group selection (Wynne-
Edwards, 1986), tag recognition (Holland, 1996) and envi-
ronment viscosity (Hamilton, 1964). In particular, kin selec-
tion stresses that genes responsible for altruistic behaviours
can increase in frequency when there is a chance that ben-
eficiaries of such altruistic acts also carry such genes. In
other words, kin selection hypothesizes that the inclusive fit-
ness of an individual is increased if it is genetically close to
its neighbours. Kin selection has long been a central idea
in the evolution of altruism, and recent works have shown
that several other mechanisms (such as group selection) are
actually much more related to kin selection than originaly
expected (West et al., 2007; Grafen, 1984; Queller, 1994;
van Baalen and Rand, 1998). Moreover, explicit behavioral
strategies have been shown to increase kin selection, such
as kin recognition and spatial dispersion (West et al., 2007).
In particular, a low spatial dispersion naturally favors repro-
duction among kins.

From the perspective of artificial evolution, several works
have previously addressed the evolution of altruism (Waibel
et al., 2009), and of communication (Floreano et al., 2007)
(a particular kind of cooperative behaviour) with regards to
the level of selection (at the level of the team or the indi-
vidual), and the composition of teams (homogeneous or het-
erogeneous). These works succesfully show cooperative be-
haviours could evolve from team level selection or by en-
forcing homogeneous teams, which is coherent with results
previously established in theoretical biology (cf. (Hamil-
ton, 1964)). However, these works rely on a fixed selection
scheme (rather than letting it evolve) which prevents studies
of particular dispersion strategies that could influence the
level of homogeneity and relatedness in the population.

This paper addresses the evolution of spatial dispersion
behaviour, in the context of a harvesting task that requires al-
truistic cooperation among individuals. The question under



scrutiny is to understand how spatial dispersion may evolve
when altruistic behaviour comes as a requirement for the
population to survive.In particular, it is expected that there
is a correlation between the consumption strategy and the
spatial dispersion evolved: the more altruistic the individu-
als, the less spatial dispersion should be observed (Taylor,
1992)). However, questions remain open as to whether such
behaviours may be observed easily in nature, and what kind
of behaviours may be evolved in term of consumption and
spatial dispersion strategies.

The approach followed in this work builds on an ex-
isting framework for in silico experimental evolution for
individual-based modeling and simulation undergoing an
open-ended evolutionary process (i.e. long term adapta-
tion in an open environment). In this context, the ability
for an individual to survive and pass its genotypic material
depends solely on its interaction with other individuals and
with the environment, comparably to Dawkins’ selfish gene
metaphor (Dawkins, 1976) or TIERRA’s open-ended evo-
lutionary process (Ray, 1992). Therefore, it is possible to
investigate the particular dispersion strategies which comes
from a trade-off between harvesting and genotypic material
diffusion.

In the following, the experimental setup is described,
along with methodological tools and implementation details.
A statement of the working hypotheses and outline of the ex-
periments follows. Then, the experiments are described and
discussed. Firstly, the possible correlation between spatial
dispersion and level of altruism is investigate. Secondly, the
trade-off between evolving either efficient or versatile strate-
gies is studied. Finally, the last Section concludes this work
and takes a broader perspective from this work, considering
implications both from the theoretical viewpoint wrt. biol-
ogy and from the practical viewpoint wrt. collective adaptive
systems.

Method
Open-ended Evolution with mEDEA

The mEDEA algorithm, as in minimal Environment-driven
Distributed Evolutionary Adaptation, was initially intro-
duced in (Bredeche and Montanier, 2010). It performs as
an evolutionary adaptation algorithm that can be distributed
over a population of agents (i.e. each agent in the popula-
tion runs the same algorithm, but carries different genomes).
While it has been originaly designed for collective robotic
systems, it can be (and has been) used as a modeling and
simulation tool for studying spatial interactions between
agents. In previous works (cf. Montanier and Bredeche
(2011)), mEDEA has been used to study the impact of
genotypic relatedness on altruistic cooperation, in particu-
lar whenever genotypic relatedness between individuals is
enforced through kin recognition (i.e. explicitly favoring the
reproduction of closely related individuals).

Figure 1: The mEDEA algorithm: a simplified illustration.
(1): generation starts, genome reservoirs are empty; (2) and
(3): agents move around (each agent is controlled by its own
active genome) and exchange mutated genomes when close
enough ; (4): generation ends - the red genome has spread
more and thus have higher probability of being selected (in
this case, probability is indeed p = 1 in two agents while the
two other genomes only get p = 0.5 in one single agent).
After selection, all the reservoirs are emptied. Note that the
next generation will contain slightly mutated copies of the
original genomes.

Figure 1 provides an illustrative example of how mEDEA
works (see (Bredeche and Montanier, 2010) for a complete
description of the algorithm). Each robotic agent contains
an active genome, which (indirectly) controls the agent’s be-
haviour, and a reservoir of stored genomes, which is empty
at first. At each time step (or iterations), each agent broad-
casts in a limited range a slightly mutated copy of its active
genome (gaussian mutation) and stores genomes received
from neighbours, if not already stored. At the end of a gen-
eration (i.e. a pre-defined number of iterations), each agent
“forgets” its active genome and randomly picks one genome
from its reservoir of stored genomes (if not empty). Then
the reservoir is emptied, and a new generation starts. This
algorithm is running independently within each agent in the
population. By this mean, agents’ behaviours differ depend-
ing on each agent’s current active genome.

Therefore, selection pressure occurs at the population
level (the more a genome spreads itself, the higher the prob-
ability it will generate offsprings) rather than at the individ-
ual level (random sampling). Genomes survive only through
spreading (as an active genome is automatically deleted lo-
cally at the end of a generation) and individual may get bet-
ter over time as conservative mutations generate new candi-
dates that explore alternative behavioural strategies.



Figure 2: Snapshot from the simulator: food items (circles),
agents (dots) and obstacles

On the one hand, mEDEA resembles other open-ended
evolutionary setups such as TIERRA (Ray (1991)) as se-
lection pressure occurs through interactions between agents
in their environment rather than by explicitly computing a
fitness value (such as a metabolic function). On the other
hand, relying on a maximum number of active mobile agents
makes it possible to set an upper bound in term of computa-
tional time required for the simulation, in a similar fashion
as it is by setting a maximum number of cells in AVIDA
(Ofria and Wilke, 2004). In mEDEA, each genome com-
petes for accessing a limited set of resources: the population
of robotic agents.

Setup
The setup used in this work (displayed in Figure 2) features
simulated robotic agents which harvest food items from the
environment in order to remain active. Each robotic agent
consumes a fixed amount of energy at each iteration, and
has a limited energy storage capability.

Each agent can be in three different states: active, dead
or listening. At the beginning of a run all agents are in the
active state, i.e. they are using an active genome (randomly
generated in the range [−1.0; 1.0]) , and their energy level is
greater than 0. If during a generation an agent runs out of
energy, it switches to the dead state. In this state the agent
has no active genome, remain stationary, and cannot store
genomes from robots passing by. The dead state is main-
tained for one generation, after which the agent switch to
a listening state. In this state the agent doesn’t move but
stores the genomes broadcasted by agents in its neighbour-
hood. This state is maintained during one generation. If at
the end of a generation in listening state the reservoir is still
empty, the agent will remain in listening state for another
generation, and so on. Any agent with an empty reservoir at
the end of a generation switches to the listen state.

Food items are randomly placed in the environment. Once
a food item has been harvested it becomes unavailable for
some time, termed EPLag (the regrow delay). This term
depends linearly on the energy harvested from it as shown
in Equation 1:

EPLag = Eharvested/EPeMax ∗ EPLagMax (1)
EPeMax

is the maximal amount of energy that can be
harvested from a food item by an agent. Eharvested is the
energy actually harvested from the food item by an agent.
EPLagMax is the maximal regrow delay of a food item.

Environmental pressure can be changed from low to high
by setting the value of the EPLagMax parameter. Large
EPLagMax

values result in longer regrow delay (i.e. larger
EPLag values) whenever a food item is completely har-
vested, which decreases the number of food items available
for some time.

Monitoring Consumption Strategy
An agent may display an altruistic behaviour by harvesting
only part of a food item. Such a consumption strategy is
costly in terms of fitness (as it might run out of energy),
and is of benefit to other agents (the food item will regrow
faster). On the contrary, selfish agents will completly har-
vest any food item, which is likely to incrase their chance to
survive, but also reduces the number of food items available
to other agents.

The consumption cost an agent accepts to pay is measured
by the difference between how much energy could have been
harvested by the agent (in order to completely fill the bat-
tery), and how much was really harvested. Equation 2 gives
a definition of the consumption cost:

Cost = max(0,min(EPeMax , rEmax−rEnow)−Eharvested)
(2)

EPeMax is defined as before (i.e. maximal energy in
a food item), rEmax is the maximal energy level of an
agent, rEnow is the current energy level of the agent, and
Eharvested is the energy harvested by the agent from the
food item.

While a selfish agent shall have a consumption cost of
zero, an altruistic agent should ideally be able to perform a
trade-off between its altruistic nature and its survival needs.
Therefore, the consumption cost of altruism can be seen as
the agent’s level of sacrifice which is continuous (a quantity
of energy) rather than discrete (eat or don’t eat).

As a last remark it should be noted that the consumption
strategy is but one way to monitor altruistic behaviours. As
an example, two different consumption strategies, each com-
bined with a different exploration strategy (travelling speed,
area coverage) may well end up with the same number of
food items available at any time (slow but greedy vs. fast
but frugal agents). The next paragraph investigates how to
take into account spatial dispersion strategies, in addition to
consumption strategies already considered.

Monitoring Spatial Dispersion
Spatial dispersion may impact harvesting strategies as well
as altruistic cooperation in various way as low dispersion



(i.e. remaining in the same region) may both favour ex-
ploitation of the same food items as well as increasing kin
selection (and therefore impact the level of altruism, as long
known since Maynard Smith (1964)). In order to account
for spatial dispersion, we devise a measure to approximate
the area covered by one agent during its lifetime.

In order to do so, the environment is divided into squared
regions. For each agent, the number of regions is counted
during its lifetime, and the AreaCovered value is computed
following Equation 3:

AreaCovered =
#V isitedCells

#Cells× lifetime
(3)

In the following, the environment has been divided in
33920 cells of 4 by 4 pixels. The theoretical minimal value
of this measure is 1/(#Cells× lifetime) = 7.34258 ×
10−08. The maximal value depends on agents maximal
speed (MaxAgentspeed given in fraction of cell area), and
is given by Equation 4:

MaxAreaCovered =
MaxAgentspeed

#Cells
(4)

Working Hypotheses
Firstly, the link between consumption strategies and spatial
dispersion will be investigated by monitoring spatial disper-
sion whenever a pre-defined consumption strategy is used.
The expected result is that the level of altruism displayed
during consumption of food items should be (negatively)
correlated with spatial dispersion (the higher the consump-
tion cost, the lower the dispersion) as lower dispersion the-
oretically increases genotypic relatedness, which is a key to
altruistic behaviour. However, it remains to be investigated
if such results can actually be observed as survival becomes
more challenging as environmental pressure increases (i.e.
spatial dispersion may not be solely driven by altruistic mo-
tivation).

In practical, this will be done by enforcing the amount of
energy that is left when harvesting a food item. In Equa-
tion 2, this corresponds to setting a value for Eharvested

so that the Cost paid is equal to the ”fixed” cost expected.
In this paper, two different fixed costs, each close to one
particular extreme consumption behaviour, are investigated:
whenever a food item is harvested, either 5 (slightly altruist)
or 40 (very altruist) units of energy are left over on a total
of the 50 units of energy a food item can provide, implying
different consequences on the food item’s delay to regrow.
These fixed cost consumption strategies will be referred to
as cost = 5 and cost = 40 consumption strategies in the
next Section.

Secondly, the possible benefits of leaving to evolution
both the consumption strategy and the spatial dispersion
strategy will be investigated. It is indeed not clear that letting

both strategies evolve should lead to better survival strate-
gies, as evolution may face a more difficult challenge due to
an increased number of degrees of freedom. In practical, the
consumption cost to be paid when a food item is harversed
will be left to the robot to decide and both consumption cost
(cf. Equation 2) and spatial dispersion will be monitored.
The expected result is that evolving both consumption cost
and spatial dispersion may possibly lead to a richer set of
behaviours whenever environmental pressure varies, though
possible benefits remain to be identified. This consumption
strategy will be referred to as dynamic cost in the next Sec-
tion.

Results
Technical Details
A Multi-Layer Perceptron (MLP) is used to encode the con-
troller of each robotic agent. The input layer is composed
of 12 inputs (8 for distance sensors, 1 for the direction to
the closest energy point, 1 for the distance to the closest en-
ergy point, 1 for the battery level of the agent, 1 to detect
the presence of an energy point under the agent), the hidden
layer is composed of 5 neurons, and the output layer is com-
posed of 3 neurons (rotational speed, translational speed and
amount of energy to be harvested (used only if a food item
is within reach)). The output neuron for energy harvesting is
not taken into consideration when a fixed cost is used. The
weights of the MLP are decoded from the active genome of
the agent. A gaussian mutation is used, and initial weights
are set randomly around zero. The σ parameter for muta-
tion is evolved, and a minimal value (0.01) is fixed to avoid
obtaining a population of clones

All experiments are performed with Roborobo, a fast
open-source multi-robot simulator (Bredeche et al., 2013).
In order to ensure the reproducibility of the experiments pre-
sented in this paper, the full implementation is available on-
line1 and parameters used are summarized in Table 1. One
run takes approximately one hour to be performed using one
core of a quad-core 2 CPUs Intel 2.26 GHz processor. All
experiments presented in this paper are performed on a com-
puter cluster equipped with such processors. For each setup
considered in the next section results, each Figure results
from a compilation of 500 independant runs, and statisti-
cal significance is tested using the Wilcoxon signed-rank
test (Wilcoxon, 1945).

Evolution of Spatial Dispersion Strategies
In order to obtain results on a large range of environmen-
tal pressures, the experiment starts with a low environ-
mental pressure (EPLagMax = 25 iterations) until the
400000th iteration. After this, the environmental pressure

1http://pages.isir.upmc.fr/evorob_db/moin.
wsgi



Figure 3: Area coverage measured when the cost of altruism is fixed to 5 (left) and 40 (right) and the pressure of the environment
increases by step of 80 iterations every 4000 iterations from iteration 400000 (before the environmental pressure is EPLagMax =
25 iterations).

Parameter Value
arena width and length 1024 ∗ 530 pixels
lifetime (i.e. generation duration) 400 iterations
selection scheme random
population size 100 agents
agent size 1 pixel
proximity sensor range 64 pixels
radio broadcast signal 32 pixels
agent rotational velocity 0.52 rad/iteration
agent translational velocity 3 pixels/iteration
genome length 84 real values (83 MLP weights + σ)
variation operator Gaussian mutation with σ parameter
cells size 4 by 4 pixels
theoretical max area 2.21108 × 10−5

theoretical min area 7.34258 × 10−8

EPeMax
50

number of energy points 800
reMax

400
energy consumption 1 per iteration

Table 1: Parameters for experiments.

slowly increases every 4000 iterations (10 theoretical gen-
erations) until the population goes extinct (i.e. no genome
left to exchange). Each increase of the environmental pres-
sure is done by a fix amount of 80 iterations in the re-
grow delay (EPLagMax

). As an example, EPLagMax
=

105 iterations at the 404000th iteration of the simulation,
and EPLagMax

= 185 iterations at the 408000th iteration.
Results obtained when two harvesting strategies with

fixed costs of 5 (less altruistic strategy) and 40 (more al-
truistic strategy) are used are presented in Figure 3 (500
runs for each setup). With both strategies the area disper-
sion evolved is increasing until iteration 400000th and de-
creasing after (p−value < 0.05 for comparison of iteration
4000000 and every iteration after 560000). This shows that
different spatial dispersion strategies are displayed through
evolution depending on the consumption strategy used and
the environmental pressure at hand.

The differences between spatial dispersions evolved un-
der different consumption strategies is expected from re-
sults obtained in biology (as said before). However, re-
sults shown here are contradictory with theory: spatial dis-
persion is shown to be higher for the more altruistic con-

sumption strategies when challenging environment are con-
sidered (while kin selection, favored by lower dispersion,
should be paired with an increased altruistic behaviour (Tay-
lor, 1992)). Rather than contradicting well established theo-
retical results, individual based modeling and simulation ac-
tually points out the complex interactions between individ-
uals and the environment. Indeed, dispersion strategies may
be influenced by much more than just acting on genotypic
relatedness. The number of active agents, the availability of
energy points, and the regrow delay are all possible causes
to explain a particular dispersion strategies. Therefore, one
question remains: in a comparable setup (i.e. removing all
other possible causes), how does dispersion strategies com-
pare when evolved with different fixed consumption strate-
gies.

Fair Comparison of Dispersion Strategies
In order to compare results from the two setups consid-
ered previously, agents’ spatial dispersions are measured
in a similar environment. The environment used for com-
parison features a consumption cost artificially fixed to 0
(whatever the initial consumption cost used during evo-
lution) and a low environmental pressure (EPLagMax

=
25 iterations). Moreover, genome transmission and selec-
tion are shut down, and robots continue to run even if energy
is depleted. This makes it possible to compare the different
behavioural strategies by replaying evolved genomes with
all other parameters set to similar values. The following re-
play procedure is defined: (1) genomes from the 600000th
iteration of a given run are randomly sampled to assemble
a population of 100 individuals ; (2) this population is em-
bodied in 100 robots (one genome per robot) (3) The spatial
dispersion of these robots is measured during 40000 itera-
tions.

For each fixed cost strategy considered earlier, genomes



are extracted from 20 runs selected randomly among the 500
discussed earlier, and replayed following the procedure de-
scribed above. The replay procedure is repeated 20 times
for each setup (total of 800 replays). In addition, we devise
a third type of behaviour, which stands as a control exper-
iment: agents using random controllers. Random transla-
tional and rotational speeds are assigned to 100 agents at
each iteration, and spatial dispersion is measured for 40000
iterations. This is inspired from typical tests in ecology field
studies where geographic tracking of animals positions are
evaluated wrt. brownian motion (Borger and Fryxell, 2012).
This control experiment is termed random behaviour, and is
also performed 800 times.
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Figure 4: Area coverage for three consumption strategies
when replayed, and for runs using random movements. All
area coverage are significantly different: p − value < 0.05
for comparisons between each boxplot.

The median results for each fixed consumption strategy
and the random behaviour are presented in Figure 4. As
expected, both strategies evolved under environmental pres-
sure (cost fixed to 5 and cost fixed to 40), display higher
level of dispersion than random movements. Then, compar-
ing the fixed cost consumption strategies, it is shown that the
area covered is significantly higher when a lower level of al-
truism is used during evolution (p− value < 0.05 between
a cost fixed to 5 and a cost fixed to 40). As a consequence,
this confirms expected results from theory: there is indeed
a negative correlation between spatial dispersion and con-
sumption behavior: enforcing a consumption strategy which
displays altruistic behaviour leads to lower spatial disper-
sion, which is expected to increase kin selection, and thus
altruistic behaviour among closely related individuals.

Typical runs for each behaviour studied (i.e. runs at the
median), are shown in Figures 5(a), and 5(b). In these two
Figures, which can only be interpreted in light of the previ-
ously shown quantitative analysis, illustrate slight but visible
differences in spatial dispersion. Trajectories obtained with
a highly altruistic consumption strategy (Cost = 40) dis-

play more localized behaviours (i.e. robot circling around in
the same area) and fewer wandering trajectories. Counting
the average number of encouters per agent also advocates for
local interactions: there are significantly less encounters for
the Cost = 40 strategy than for the less altruistic, more ex-
ploratory, Cost = 5 strategy (p − value < 0.05, Wilcoxon
test).

Evolving Consumption and Dispersion Strategies
In this last part of the paper, we investigate the impact of
evolving both the consumption strategy and the dispersion
strategy. By doing so, we intend to address the following
questions: (1) What kind of (consumption and dispersion)
strategies can be expected when evolved under different en-
vironmental pressures ; (2) What are the possible benefits
and drawbacks of evolving the consumption strategy rather
than enforcing an ad hoc consumption strategy.

As before, 500 runs are performed. The setup is similar
to the previous setups for fixed cost, except that the cost of
altruism is now chosen by the robot controller. This setup is
termed ”Dynamic Cost” has the cost paid may change any-
time and depends from evolution (i.e. the controller output
fixing the amount of energy taken from a food item is actu-
ally used). Figure 6 shows the boxplot results for consump-
tion costs paid and area dispersion evolved by all agents
thourghout evolution. As before, the environment becomes
gradually more challenging starting iteration 400000, and
stops when all runs have gone extinct.

A notable difference is that during the first part of the runs,
the consumption costs paid stick to zero, which is not unex-
pected as there is no benefit at being altruistic in an envi-
ronment that represent an easy challenge. The consumption
cost paid then abruptly changes as soon as the environmen-
tal pressure increases (p− value < 0.05 for comparison be-
tween iteration 400000 and iteration 440000). It then fluc-
tuates around a value of 5 until iteration 680000, and re-
mains significantly higher than at the beginning of the run
(p−value < 0.05, comparing results from iteration 400000
and any iteration afterwards). Moreover, the final value (at
iteration 680000) is similar to the value obtained at iteration
440000 (p− value = 0.31). Hence, there appears to be two
stable values (either no altruism (Cost = 0) or low altru-
ism (Cost =∼ 5)) for consumption cost depending on the
challenge posed by the environment.

Regarding spatial dispersion, Figure 6-right shows that
the area covered by each agent levels up, and then off, un-
til iteration 400000. Then, as environmental pressure starts
to increase, the area covered is continuously decreasing,
and ends up as significantly lower beyond iteration 560000
(p − value < 0.05, comparing area covered at iteration
400000 and any iteration from 560000).

In order to compare the behaviours obtained with a dy-
namic cost, replay sessions are performed in the exact same
fashion as it was for the fixed cost setups. Quantitative re-



(a) (b)
:

Figure 5: Trajectories from median runs for consumption strategies of cost=5 (left) and cost=40 (right).

Figure 6: Consumption cost of altruism (left) and area coverage (right) measured when the Consumption cost is dynamic
and the pressure of the environment increases by step of 80 iterations every 4000 iterations from iteration 400000 (before the
environmental pressure is EPLagMax = 25 iterations).
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Figure 7: Area coverage for two consumption strategies
when replayed, and for runs using random movements. All
area coverages are significantly different.

sults obtained by all consumption strategies studied are pre-
sented in Figure 7. Results obtained with the dynamic cost
strategy is different from all other strategies (p − value <
0.05 for comparisons between each cost strategy). This con-

firms the impact of cost strategies on the evolution of be-
haviours.

Figure 8: Number of active runs when the environmental
pressure is increasing.

Another way to study the differences between different
cost strategies is to observe the extinction of runs : that is,



for a given iteration, how many runs is there with at least one
active agent. Figure 8 shows the number of active runs for all
three setups considered (Cost = 5, Cost = 40 and dynamic
Cost) starting iteration 400000, that is when environmen-
tal pressure starts to gradually increase. From this figure,
several particular situations arise: the Cost = 5 strategy
dominates before iteration 580000, and is replaced by the
Cost = 40 strategy around iteration 600000 and until itera-
tion 700000. Afterwards, only the Cost = 40 and dynamic
Cost remain for another 100000 iterations until all runs for
both go completely extinct. Though the dynamic Cost strat-
egy goes a little further that the Cost = 40 strategy, there are
too few runs left to make any statistically significant remark
between the two setups beyond iteration 700000. Most no-
tably, the dynamic Cost strategy is nearly never completely
dominated by the two other strategies. As such, it appears
that relying on a dynamic cost strategy provide some kind of
trade-off between optimal performance in specific contexts
and versatility in various contexts, without having to take the
risk of guessing which cost must be paid prior to evolution.

Conclusion
In this paper, we have studied the importance of spatial dis-
persion during the evolution of altruistic cooperation in a
population of autonomous agents. This work followed an
individual-based modelling and simulation approach using
the mEDEA algorithmic framework for open-ended evolu-
tion, which enables to study the actual evolution of indi-
vidual spatial dispersion and consumption strategies in the
context of a harvesting task.

Firstly, well-established theoretical results on kin selec-
tion in the evolution of altruism were confirmed experimen-
tally regarding the negative correlation between the level of
altruistic behaviour and spatial dispersion. However, our
work revealed that such a confirmation may not come for
free when individual modeling and simulation is consid-
ered as the complex interactions between the population and
its environment may provide contradictory results at first
glance. This result is important as it may have an impact
on field observation from nature, where the level of spatial
dispersion may fail to directly explain the occurence of al-
truistic behaviour.

Secondly, we showed that there is a trade-off between set-
ting ad hoc mechanisms (here, the strategy used when eat-
ing a food item) and letting such mechanisms to evolution.
On the one hand, results show that the more there is left to
evolution, the less likely optimal behaviour may be reached
(compared to a priori carefully crafted strategies). On the
other hand, fully evolved strategies turn out to be more ver-
satile, i.e. showing good performance in a larger set of con-
texts, and require less prior knowledge compared to more
constrained evolutionary setups.

Lastly, this paper intends to contribute both to theoretical
biology, by providing new results from an individual-based

modeling perspective where spatial dispersion is the product
of open-ended evolution, and to collective adaptive systems,
as the algorithm used throughout this paper may straight-
forwardly be implemented onto real robots (and has already
been, albeit for a different problem).
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