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Abstract

This paper explores the following question: how a fixed-size
population of autonomous agents (such as a swarm of robotic
agents) may evolve altruistic behaviors during open-ended
evolution. In particular, we focus on a situation where the
tragedy of commons can possibly occur: a situation where
individuals must display altruistic behaviors in order forthe
whole population to avoid extinction. Our approach considers
a sub-individual framework, defined at the level of genomes
rather than agents, in order to provide an efficient algorith-
mic solution for the emergent of coordination among the pop-
ulation. Experiments show that the proposed evolutionary
adaptation algorithm favors the emergence of altruistic be-
havior under some assumptions regarding genome related-
ness. In-depth experimental studies explore the relation be-
tween genotypic diversity and degree of altruism as well as
the exact nature of the evolutionary adaptation process.

Introduction
Altruism is a remarkable behavior observed in Nature,
where actions of an individual benefit other individuals even
though these actions may negatively impact the individual’s
chances of survival. A well-known example is given by in-
dividuals that watch out for a predator and signal danger to
the group whenever it is required, thus potentially drawing
the predator’s attention to them. The reason why some indi-
viduals may sacrifice themselves for the benefit of the group
has long been studied and there are now some widely ac-
cepted theoretical basis regarding the relation between geno-
typic relatedness among individuals and degree of altruism,
as first described by Hamilton (1964). Altruism has long
been actively studied from Biology to Economics, from So-
ciology to Game Theory, to cite a few domains. It differs
from cooperation as altruism requires no direct benefit nor
reciprocity. Moreover, its benefit can only be measured at
the level of the population, as summarized by Lehmann and
Keller (2006).

This paper is concerned with the emergence of altruism
in a fixed-size population of evolving autonomous agents
where the environment is such that selfish behaviors lead
to extinction. This situation is known as the tragedy of (un-
managed) commons, as introduced by Hardin (1968, 1994):

individuals must share a common limited resource, and pos-
sibly sacrifice their own benefit, so that the population sur-
vives through generations.

The main motivation behind this research is to propose a
practical implementation of evolutionary adaptation ina pri-
ori unknown environments in the scope of a fixed-size pop-
ulation of autonomous agents. This assumption is central to
our motivation as the long term goal is to provide practical
algorithmic solutions that can be deployed in a swarm of vir-
tual agents in complex environments as well as real world
autonomous robots. The contribution in this paper is then
both fundamental and practical as the emergence of altru-
ism during the course of evolution is experimentally studied,
with a particular focus on its causes and consequences, and
is considered within an experimental setup that is closely re-
lated to the target application: a 2D virtual environment with
realistic assumptions inspired from autonomous robotics.

The paper is organized as follow: the definitions of altru-
ism and tragedy of commons are provided in the next sec-
tion, along with a short description of relevant contributions
from the fields of Artificial Life and Evolutionary Robotics.
Then, the environment-driven evolutionary adaptation algo-
rithm is described as well as the experimental settings used
for the experiment. Results from the experiment are given
and discussed, with a particular focus on the nature of altru-
ism observed. Finally, the last section provides a discussion
and conclusion and sketches future directions for this work.

Context and Motivation
This section starts with a definition of the Tragedy of Com-
mons, a well-known social dilemma where the population
welfare strongly depends on individual behaviors. Then, a
definition of altruism is given as well as a brief overview of
its theoretical foundations in Biology. The section ends with
a short review of related works in the field of Artificial Life
and Evolutionary Robotics.

The Tragedy of Commons

The tragedy of (unmanaged) commons ((Hardin, 1968,
1994)) is a particular kind of social dilemma where a pop-



ulation of individuals have access to a finite common re-
source pool: each individual may temporarily increase its
fitness through selfish behavior, but this inevitably leads to
exhaust the common resource pool, ultimately ending with
population extinction. The classic example describes farm-
ers optimizing their personal benefit by owning as many
cows as possible without any regards for the common graz-
ing the cows feed from, which will quickly suffer from over-
exploitation, ending with cows dying from starvation.

The tragedy of commons has been widely studied in both
Evolutionary Biology and Economics (Mankiw, 2009). Us-
ing a terminology from Economics, the conditions for the
occurrence of the tragedy of commons requires that the re-
source must be accessible to anyone (”non-excludable”) but
in limited quantity, thus implying competition (”rivalry”)
among individuals. It shares some similarities with the well-
known public goods dilemma1 regarding the condition of
unrestricted accessibility to the resource, but also differs as
the substractability of the resource may penalize the survival
rate of the population (e.g. because of free-riders). From the
Biology viewpoint, the tragedy of commons is known to be
responsible of in-group competition among individuals.

A possible explanation for the tragedy of commons is
the negative impact of reciprocity, where free-riders are fa-
vored as they focus on their own personal fitness gain with
no regards to the cost at the level of the population (Sober,
1992). However, several strategies have been identified and
discussed in the literature for ”solving” the tragedy of com-
mons: kin selection, policing (self-regulated punishment) or
diminishing returns (population behavior depends on eco-
logical feedback) are all good candidates observed in Nature
(Rankin et al. (2007)).

Definition of Altruism

The emergence of cooperation and altruism has been the fo-
cus of a particular attention from many research fields, in-
cluding of course Biology.

The distinction between cooperation with mutual bene-
fit2 (West et al., 2007) and ”strong” altruism (termed al-
truism from now on) depends on the nature of the fitness
benefit at the level ofeither the individualor the popula-
tion (Lehmann and Keller, 2006). Cooperation implies that
a given individual benefits from its behavior during its life-
time, either through direct or delayed (i.e. through repeated
interactions) reciprocity. Altruism, on the other hand, char-
acterizes the sacrifice of (part of) one own’s fitness for the
benefit of others. Therefore, an altruistic behavior bene-

1In the public goods dilemma, individuals may choose to invest
a part of their benefit for the group welfare.

2Cooperation is also sometimes used as a synonym for altruism
(e.g. cooperation in the prisoner’s dilemma corresponds toaltru-
ism (Sober, 1992)). In this paper, we assume the restricted and
well-accepted definition of cooperation as a behavior leading to
mutual benefit.

fits other individuals and possibly has a positive impact on
longer time-scale (e.g. more than a single lifetime).

Several theories have been identified, covering different
kinds of behavior observed in Nature, from mutualism to
conditional cooperation. On the one hand, mutualism is the
case where cooperation leads to direct benefit even though
a single individual displays a cooperative behavior (May-
nard Smith J., 1983; Lima, 1989; Packer C., 1988; Dugatkin
and Wilson, 1992). On the other hand, the more classic
conditional cooperation scheme implies that all individuals
share the same cooperative strategy so that the whole pop-
ulation welfare is increased: kin selection (Hamilton, 1964;
Maynard Smith, 1964), reciprocity (Trivers, 1971; Axelrod
and Hamilton, 1981) or the more controversial group selec-
tion (Wynne-Edwards, 1986; Dugatkin, 1994; West et al.,
2007) can be accounted for such conditional cooperation.

While the emergence of cooperation can be explained by
the fact that every individuals benefit from such a behavior
(i.e. no cost to cooperate), the justification for altruism is not
as straight-forward. The idea of inclusive fitness proposed
by Hamilton (1964) is now widely accepted to account for
the emergence of altruism: inclusive fitness considers the fit-
ness of a particular individual to depend both on its own be-
havior and the behavior of its close relatives. The basic idea
is to consider individuals as vehicles for genes, therefore
kinship must be taken into account rather than the sole inter-
est of one individual/vehicle. Of course, sacrificing oneself
depends on several parameters such as the expected fitness
loss (from sacrifice) and benefit (for others) as well as the
genotypic relatedness of the individuals concerned (closer
relatives may imply increased altruistic behaviors).

Hamilton formalized the relationship between cost, bene-
fit and relatedness in the following equation:C/B < r. The
CostC is the amount of fitness lost by an altruistic individ-
ual. The benefitB is the amount of fitness gained by the
recipient that benefits from the altruistic behavior. Andr is
the genotypic relatedness between the two individuals. The
term kin selectionhas been introduced by Maynard Smith
(1964) to illustrate the mechanism and consequences with
inclusive fitness: if one’s individual is willing to sacrifice it-
self for closely related individuals, the gene responsiblefor
such an altruistic behavior may spread through natural selec-
tion as it is likely to be present also in the genotypic material
of its parents.

Models of Altruism in Artificial Life

Altruistic behavior, as well as the emergence of altruism,
has also been investigated in the field of Artificial Life. All
the major theories have been studied: kin selection (Sober,
1992; Leticia et al., 2004), group selection (Fletcher and
Zwick, 2004, 2007) and other mechanisms such as effect
of increased environment’s viscosity (Mitteldorf and Wil-
son, 2000), communication (Ackley and Littman, 1994) and
tag mechanism (Spector et al., 2004; Spector and Klein,



2006). Previous works have provided studies with various
approaches, from game theoretic models to discrete and con-
tinuous virtual world simulations. Moreover, kin selection,
reciprocity and group selection have been described as vari-
ations of a similar mechanism favoring the correlation of in-
teraction between agents (Woodcock and Heath, 2002).

The emergence of altruism under specific condition have
also been studied in virtual or real environments, in par-
ticular with respect to the public good dilemma (Connelly
et al., 2010; Waibel et al., 2009) and to the tragedy of com-
mons (Spector et al., 2004; Scogings and Hawick, 2008),
with similar concerns for different selection schemes.

Waibel et al. (2009) discusses the ability to evolve altru-
ism in team of homogeneous robots with group selection
in a setup similar to the public good dilemma. Facing the
same environmental conditions, Connelly et al. (2010) ex-
perimentally show that altruism naturally emerges as long
as resources is widely available.

The tragedy of commons has been addressed by Spector
et al. (2004), where tag recognition favors the interactionbe-
tween altruistic agents facing a tragedy of commons, and by
Scogings and Hawick (2008) in a prey-predator setup. Even
though their work considered population with fixed strat-
egy (rather than evolutionary adaptation), they illustrated the
ability of altruistic population to survive in aggressive envi-
ronment even when confronted to selfish individuals.

Method
In this paper, we are interested in identifying the emer-
gence of altruism in the scope of environment-driven self-
adaptation in a population of autonomous agents. The mo-
tivation behind this work is two-fold. Firstly, our long-term
motivation targets the design of an evolutionary adaptation
algorithm for a limited group of autonomous agents that is
capable of facinga priori unknown situations. An important
requirement is that the algorithm should be implementable
in a virtual or real-world environment (e.g. multi-agent sim-
ulation, agents in virtual worlds, robot swarms).

Secondly, we ask the following question: what can be
expected when a population of evolving agents faces the
tragedy of commons. This implies to identify if a strategy
emerges, but also the nature of this strategy, if any.

In this section, we describe the algorithm and the experi-
mental setting used for this work. In particular, the experi-
mental setting has been designed so that the population faces
a setup where the tragedy of commons is expected to occur.
Lastly, methodological tools for monitoring altruistic behav-
iors are introduced at the end of the section.

Algorithm
The mEDEA3 algorithm takes inspiration from the selfish
gene metaphor popularized by Dawkins (1976) and per-
forms as an evolutionary adaptation algorithm that can be

3minimal Environment-driven Distributed Evol. Adaptation.

distributed over a population of robotic agents (i.e. each
agent in the population runs the same algorithm, but carries
different genomes). It was first introduced by Bredeche and
Montanier (2010) to address robustness issue with dynamic
unknown environments and has been successfully validated
on real e-puck autonomous robots (Bredeche et al. (2011)).

In this framework, each agent contains anactivegenome,
which (indirectly) controls the agent’s behavior, and areser-
voir of stored genomes, which is empty at first. At each
time step, each agentbroadcastsin a limited range (ap-
prox. 1/32th of the arena’s width) aslightly mutated copy
of its active genome (e.g. with gaussian mutation) and stores
genomes received from neighbors, if close enough. At the
end of a ”lifetime” (i.e. a pre-defined number of time steps),
each agent ”forgets” its active genome andrandomlypicks
one genome from its reservoir of stored genomes (if not
empty). Then the reservoir is emptied, and a new lifetime
starts. This algorithm is duplicated within each agent in the
population, even though agents’ behaviors differ depending
on each agent’s current active genome.

There are three major claims why this algorithm works.
Firstly, selection pressure occurs at the population level
(the more a genome spreads itself, the higher its fitness)
rather than at the individual level (random sampling). Sec-
ondly, genomes survive only through spreading (as an active
genome is automatically deleted locally at the end of a gen-
eration). Thirdly, individual fitness improves over time as
conservative variations generate new candidates that explore
alternative (but closely related) behavioral strategies.

In practical, this algorithm provides an evolutionary adap-
tation mechanism, but does not provide a control function.
The actual control of the agent behavior shall be performed
by a dedicated controller whose parameters are determined
from the genome. In other words, the mEDEA algorithm
provides evolutionary adaptation by tuning the control ar-
chitecture. In the rest of this paper, the controller used isa
Multilayer Perceptron whose weights are decoded from the
genome (more details in the next Section).

The mEDEA algorithm shares some similarity with
the basic concepts demonstrated in Tierra (Ray, 1991),
AVIDA (Adami et al., 1994) and followers, but also differs
as it was originally designed for real world environments
with a limited number of moving autonomous agents such
as mobile robots. It can also be related to Embodied Evo-
lutionary Robotics (Watson et al., 2002) regarding the pos-
sible implementation on physical agents, but with the major
difference that it is not meant to optimize a pre-defined ob-
jective function.

Experimental Setup

In order to account for the existence of altruism, we have
defined a foraging task where a population of autonomous
agents must eat food items to maintain a positive energy
level. The experimental setup used in the next section is il-



lustrated in figure 1, with food items (circles), agents (small
dots) and obstacles. The environment and task depends on
the following elements: (1)Self-sustainability: foraging is
necessary to survive, as each food items give a small amount
of battery energy. However, an agent’s battery is limited
to a maximum amount of energy, and foraging may end up
in wasting resource. (2)Foraging behavior: an agent may
choose to harvestall or part of a food item. (3)Re-grow
rate: whenever a food item is harvested, it is removed from
the environment until it grows back after some delay. The
time to grow back depends on the quantity of energy har-
vested from the food item.

As a consequence, the environment features a common
resource pool for which agents compete: a perfect setup for
the Tragedy of Commons to occur. Indeed, it is then enough
to set the appropriate delay before a given food item would
grow back. This is achieved by setting the maximum re-
grow delay for a food item (EPLagMax

, with EP as in ”En-
ergy Point”), which in turn will be used to compute on-the-
fly the re-grow delay of a food item that was just harvested
(EPLag). This is described in equation 1, which also takes
into account the amount of energy harvested by an agent
from the food item (Eharvested) and the amount of energy
available in each food item (EPeMax

).

EPLag = Eharvested/EPeMax
∗ EPLagMax

(1)

Within this setup, it is expected that altruistic agents in ag-
gressive environments shall harvest the minimum amount of
energy from each food items, therefore increasing the avail-
ability of the resource (short re-grow delay, no wasted en-
ergy). On the other hand, selfish behaviors are likely to be
fitted for small values ofEPLagMax

, but are expected to be-
come more and more critical as the value ofEPLagMax

in-
creases.

Figure 1: Snapshot from the simulator: food items (circles),
agents (dots) and obstacles

Methodology
In order to account for altruism, we define a measure for
monitoring thecost of altruismfor one foraging agent. In
the setup described earlier, this corresponds to measuringthe

amount of energy thatcould beconsumed when harvesting a
food item, but which is actuallynot consumedby the agent.
This is formally defined in equation 2.

Cost = max(0, min(EPeMax
, rEmax

−rEnow
)−Eharvested)

(2)
WhereEPeMax

is defined as before (i.e. maximal energy
in a food item),rEmax

is the maximal energy level of an
agent,rEnow

is the current energy level of the agent and
Eharvested is the energy harvested by the agent from the
food item.

While a selfish agent shall have a cost of zero, an altru-
istic agent should be able to perform a trade-off between its
altruistic nature and its survival needs. Therefore, the cost of
altruism can be seen as the agent’s level of sacrifice which is
continuous (a quantity of energy) rather than discrete (eator
dont eat).

Results and Analysis
This section presents results obtained running the mEDEA
algorithm in the environment described in the previous sec-
tion. The organization of the section is as follow: the al-
gorithm is evaluated for its ability to evolve agents with al-
truistic behavior. Then, the nature of altruistic behavioris
investigated, considering the balance between environmen-
tal pressure and the algorithm’s mechanisms. Finally, the
relation between genotypic relatedness and the degree of al-
truism is explored along with its impact on the survival rate
of the population.

All experiments were conducted with100 robotic agents
in the environment described and illustrated in the previous
section. The environment contains800 food items and an
agent may harvest a maximum of50 units from a food item.
Each agent consumes1 unit of energy per step, and can store
up to 800 energy units (harvesting surplus is lost). If the
agent’s battery level drops to zero, the agent stops and its
genome is lost. It is then refilled with a small portion of
energy, but remains still until it receives a new genome.

The control architecture is a Multilayer Perceptron (MLP)
with 5 hidden neurons,11 inputs (8 proximity sensors, bat-
tery level and orientation/distance to the closest food item)
and3 outputs (left/right motor and proportion of energy to be
harvested from a food item, if any). The weights of the MLP
are decoded from the active genome of the agent. Each agent
broadcasts a mutated copy of its own genome and receives
genomes from neighbors within a limited range (roughly
1/10th of the length of the larger side of the environment).
The mutation operator used in the Medea algorithm is de-
fined as a gaussian mutation with aσ parameter.σ is in-
cluded into the genome (i.e. similar to a self-adaptive Evo-
lution Strategy) and ranges from0.01 (low mutation rate) to
0.5 (large mutation rate).

All results shown here have been achieved inROBOROBO,



a fast 2D simulation for robotic agents, originally introduced
by Bredeche and Montanier (2010) . The source code for re-
producing the experiments is freely available for download
(http://www.lri.fr/˜montanier/roborobo-ecal). For each ex-
perimental settings, a set of600 independent runs have been
performed during320000 iterations (=800 generations) to
provide statistically significant data.

Emergence of Altruism in Medea

A large set of experiments was performed under vari-
ous environmental pressures by setting a specific value of
EPLagMax

for each run, ranging from25 steps (easy envi-
ronment) to400 steps (aggressive environment), for a to-
tal of 16 setups. For each setup (i.e. a fixed value of
EPLagMax

), 600 independent runs were performed and re-
sults were aggregated to extract various indicators: number
of active agents, average cost measure and energy balance
(i.e. a positive value means agents harvest more than the
minimal requirement). In all experiments, the course of evo-
lution is similar: the number of active agents quickly in-
creases to a stable value while costs start from random val-
ues and stabilize to (possibly) positive values. While the
increasing number of active agents is expected from evo-
lutionary adaptation, the second observation is of primary
importance regarding the possibility of altruistic behavior: a
positive cost value would imply that agents do not systemat-
ically harvest all possible energy from the food items.

Results are summarized in figures 3(a), 3(b) and 2 (resp.
number of active agents, cost measure and energy balance),
by taking into consideration the last10 generations of all
runs for each setup (i.e. after convergence to stable behav-
iors). Altruistic behavior in the context of increasing envi-
ronmental pressure can be observed by looking at the cost,
which converges to a stable value, while the energy balance
converges to zero (i.e. the limit for survival). Indeed, altru-
istic behaviors are observed starting with environments with
EPLagMax

= 100, and remains afterwards. With stronger
environmental pressures (larger values ofEPLagMax

), the
number of active agents decreases, which confirms that the
environment is becoming more and more challenging.

Several observations can be drawn from these results.
Firstly, altruistic behaviors are difficult to observe whenen-
vironmental pressure is low and tragedy of commons not
bound to occur (median values are close to zero for val-
ues ofEPLagMax

under100 steps). This tends to reveal
the greedy nature of the algorithm: without environmental
pressure, altruism does not emerge spontaneously. In fact,
it is possible to classify the individuals’ behavioral patterns
with respect to (a) their fellow agents (selfish vs. altruis-
tic behavior) and (b) the environment (frugal vs. greedy
behavior). the mEDEA algorithm tends to generategreedy
but altruistic agents depending on the environment at hand.
Secondly, altruistic behaviors remain stable in the popula-
tion even though the environmental pressure increases and

the number of active agents starts to drop, implying limited
correlation between the level of altruism and environmental
pressure. This is explored in the following.
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Investigating the Nature of Altruism

In order to explore the dynamics of the algorithm, a first
experiment is designed to evaluate its ability to converge
towards the same results from different initial conditions.
Starting with a population of agents already evolved in
a challenging setup (EPLagMax

= 400, strong pressure,
used during1000 generations), the population is abruptly
changed to a smoother environment (EPLagMax

= 200,
moderate pressure) and re-adaptation (if any) is studied. The
expected outcome is that the number of active agents and the
cost measure should converge back to the expected values
(shown before). This is indeed what is observed, as shown
in figure 4, advocating for the robustness with regards to ini-
tial conditions, at least in this case (i.e. starting from already
evolved genomes rather than pure random genomes). This
is also confirmed by a Mann-Withley’s statistical test.

However, a careful analysis of the results reveals a sur-
prising feature occurring when the environmental pressure
is changed: the number of active agents rises significantly
before going back down to its final stable value. The same
holds for the cost measure, as a sudden drop is observed,
preceding a slow convergence to the expected, higher, value.
This is indeed a surprise as, for a brief moment, individuals
actually have a better survival rate even though more egoistic
behaviors are monitored. A closer look at the results in the
close vicinity of the change in the environment (not visibleat
this resolution) actually confirms this: after the environmen-
tal change, the number of active agents (resp. cost measure)
quickly rises (resp. drops), before slowly converging back
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Figure 3: Results withEPLagMax
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measure (data: median values from each run)

to its final expected value.
A candidate hypothesis for explaining the algorithm’s

behavior is to reconsider the very nature ofwhat can be
stated as its intrinsic motivation: mEDEA may be per-
forming a trade-off between survivaland stability of evo-
lutionary dynamics, rather than survival only. In or-
der to investigate this hypothesis, we define a measure
of evolutionary stability that takes into account the num-
ber of ancestors from a previous generation for individu-
als of the current generation (i.e. the larger the number,
the more the ancestor with one offspring only). Larger
numbers imply a more stable population as it means that
more genomes actually survived through their offsprings.
In other words, a population with many ancestors imply
lack of selective pressure. In practical, this is defined as
follow: nbStrainsgen=N−b/nbActiveAgentsgen=N , with
nbStrains the number of ancestors fromb generations ago
with at least one descendant in the current generation. The
value is normalized in[0, 1]. Lower values imply increased
selective pressure.

Figure 5 tracks this value for a few generations: for each
generation (i.e. each boxplot), the (normalized) number of
ancestors fromb = 10 generations ago with at least one off-
spring in the current generation is drawn. During the short
increase in performance after the environmental change, the
number of ancestors decreases for at least10 generations,
which indicates that fewer genomes actually benefited from
a stronger selective advantage. However, selective pressure
then goes back to a more conservative level, even though be-
haviors end up being sub-optimal with respect to survival (as
shown before). Why the best genomes for survival do not re-
main in the population is yet to be fully understood. In this
context, it is likely that egoistic agents may only temporarily
benefit from the change, as they may not be enough in num-
bers to take over the population before altruistic agents adapt
to the new environment. Indeed, very specific initial con-

ditions (forcing egoistic behavior at start-up) or dedicated
mechanisms in the algorithm (see next section for a discus-
sion) may be required to obtain the best population wrt. sur-
viving rate.
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Figure 5: Ancestors from generationN−10 with at least one
offspring in the current generation (34 generations before
and after the change are shown).

Discussion on Diversity and Altruism
As stated previously, it is likely that selective pressure acts
in favor of a trade-off between optimizing survival and al-
gorithmic internal stability. But what happens if one were
to deliberately enforce genotypic homogeneity? In the fol-
lowing, we address this question and discuss its possible im-
plications. The motivation is two-fold: firstly, the goal isto
explore the relation between genotypic homogeneity, level
of altruism and survival rate. Secondly, part of the answer
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to this question is a first step towards controlling the evolu-
tionary dynamics at work in the algorithm.

A set of additional experiments have been performed
where genotypic relatedness is favored during the selection
process, in order to decrease genotypic distance among in-
dividuals in the population. In practical, the algorithm’sran-
dom selection that is embedded in each agent is replaced
by a tournament selection (Miller and Goldberg, 1995) (also
embedded in each agent), where ranking is based on the
genotypic (euclidian) distance between the previously ac-
tive genome and the locally available genomes (the closer,
the better). Tournament selection combined with genotypic
distance (termed kin-tournament from now on) makes it pos-
sible to introduce an explicit pressure towards kin selection,
which can easily be tuned by the size of the tournament.

Experiments with a tournament size of3 (roughly corre-
sponding to medium pressure towards kin selection) have
been achieved with two setups, one with moderate envi-
ronmental pressure (EPLagMax

= 200) and the other with
a strong pressure (EPLagMax

= 400). For each setup,
200 runs were performed, and statistical test are computed
with Mann-Whitley’s Test to clearly establish the differ-
ence in performance. Performing kin selection increases
the level of altruism in both cases (roughly doubling it,
p− value < 10−15). While the number of runs with extinc-
tions is roughly similar (p− value = 0.07 for EPLagMax

=
200, andp− value = 0.71 for EPLagMax

= 400), enforced
kin selection suffers from a smaller number of active agents
(p − value < 10−15).

These results can be put in perspective with Hamilton’s
idea of inclusive fitness (Hamilton, 1964). The intrinsic
mechanisms in the algorithm, in particular conservative mu-
tation, already imply a strong genotypic relation between
one genome and its offsprings. Kin selection is shown to
artificially increase the already existing level of altruism, at
the cost of a decreased overall performance wrt. to individ-
ual survival. This is not a surprise as altruistic behaviors

were already shown previously to lead to sub-optimal sur-
vival rate, which is even more critical when environmental
pressure is aggressive. Nevertheless, the kin-tournamentse-
lection as proposed here actually does provide an interesting
tunable mechanism to act on the level of altruism, and could
possibly lead to a more competitive, heterogeneous popula-
tion if kin selection is penalized rather than favored.

Conclusions and Perspectives

In this paper, we investigated evolutionary adaptation in a
population of robotic agents whenever altruistic behaviors
are mandatory to survive. The algorithm under scrutiny was
shown to naturally evolve greedy-altruistic agents withinag-
gressive environments (ie. greedy behavior whenever it does
not impact the survival rate of the population). An impor-
tant message from this paper is that evolutionary adapta-
tion in this context does not automatically lead to the best
survival strategy but rather converge towards a trade-off be-
tween algorithmic stability and survival. Also, the relation
between genotypic relatedness and the level of altruism was
confirmed and a possible mechanism to control the level of
altruism has been identified.

Perspectives from this work include deeper investiga-
tion regarding the exact causes of the sub-optimal survival
strategies obtained. Moreover, tuning the level of altru-
ism offers interesting perspectives with regards to modeling
environmental-feedback induced altruistic behaviors, such
asdiminishing returns, where altruism may be regulated by
the environment (Rankin et al., 2007).
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